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Abstract
We present explicit self-similar solutions for the two-dimensional plasma-ion
sheath system in the plasma physics. We show that the self-similar solutions
are consistent with numerical simulations of Sheridan (1996 Phys. Plasmas 3
2461–6).

PACS numbers: 02.30.Jr, 52.40.Kh
Mathematics Subject Classification: 35Q35, 35Q80

1. Introduction

The purpose of this paper is to present exact self-similar solutions for the motion of a plasma
sheath (in short, sheath) in a plasma consisting of ions and electrons. The motion occurs
in two space dimensions x, y and the self-similar solutions are functions of the self-similar
independent variables ξ = x/t, η = y/t , where t is time. While considerable numerical and
experimental evidence has appeared in [4, 5, 17, 19–22], there seem to be no earlier exact
solutions in the literature. As is well known, sheaths arise from the breakdown of the quasi-
neutrality, when boundary conditions are imposed on ion–electron plasmas [1, 8, 9, 12, 14–16].
Specifically sheath formation occurs when a large voltage drop occurs in a plasma, causing
relatively light electrons to accelerate into a target boundary. The target then becomes strongly
negatively charged, hence repelling other electrons and forming an electron vacuum boundary
layer. Mathematically the breakdown may be seen via the study of steady state or dynamic
equations. Although the analysis of sheath formation via the steady flow is quite well known
[8, 12, 14], here we follow a dynamic model given in [16].

Consider a plasma consisting of ions and electrons. Then the density of the ions is denoted
by n, the density of the electrons is e−� (the Boltzmann relation for light electrons), −� is
the electron potential and u is the velocity of the ions. Here all quantities have been made
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dimensionless (see e.g. [14–16]). In this case, a fluid description of an isothermal motion is
provided by the isothermal Euler–Poisson equations


∂tn + ∇ · (nu) = 0,

∂tu + (u · ∇)u + τ∇ ln n = ∇�,

ε2�� = n − e−�,

(1.1)

where ε is proportional to the Debye length and τ � 0 is the ratio of ion temperature to
electron temperature.

Since the Debye length is small, ε is a small parameter and the Poisson equation (1.1c)
suggests the quasi-neutral relation n = e−� should pervade in our problem. Substitution of
this relation into (1.1b) yields the quasi-neutral system{

∂tn + ∇ · (nu) = 0,

∂tu + (u · ∇)u + (τ + 1)∇ ln n = 0.
(1.2)

If (1.1) and (1.2) are supplemented by arbitrary initial and boundary conditions, the resulting
initial-boundary value problem for (1.2) is generally ill-posed. Consider for example the cases
of planar, cylindrically and spherically symmetric motions with boundary configurations
consistent with these symmetries. In these cases, the quasi-neutral system (1.2) becomes


∂tρ + ∂r(ρu) = 0,

∂tu + ∂r

(
u2

2
+ (τ + 1) ln n

)
= ν

r
,

(1.3)

where ν = 0, 1, 2 correspond to planar, cylindrical and spherical cases respectively and
ρ = rνn. System (1.3) possesses characteristic curves χ1, χ2 satisfying the relations

dχ1

dt
= u −

√
τ + 1 and

dχ2

dt
= u +

√
τ + 1. (1.4)

Consider the case of planar motion (ν = 0) with initial data (ρ, u,�) prescribed on
r > 0, t = 0, with u < −√

τ + 1, initially and boundary data (u,�) prescribed on the target
boundary r = 0, t > 0, � � 1. In this case, both characteristics will run (at least for small
r > 0, t > 0) from the initial line r > 0, t = 0 into the boundary r = 0, t > 0, thus
transferring initial data into boundary data, and making the initial-boundary value problem
overdetermined, and hence ill-posed. This ill-posedness reflects the breakdown of the quasi-
neutral limit near the Bohm velocity u = −√

τ + 1 where the flow becomes supersonic (or
more generally a Mach surface, see [23] and section 4 of this paper). Also note that since the
Poisson equation (1.1c) reads

ε2�� = n − e−�, (1.5)

the quasi-neutrality condition is violated when the left-hand side of (1.5) becomes non-
negligible. Via the obvious scaling of (1.1c) Godyak and Sternberg [9] postulated that this
occurs in a region when the electric field ∇� is of the order of ε−1 (see also [15, 16]). Hence
we have two possible different ways of locating the sheath ‘interface’, one based on a sonic
boundary and the other based on the magnitude of the electric field.

In order to capture the dynamics of the sheath boundary layer, we return to the original
Euler–Poisson system (1.1) and we rescale space and time to fast variables (x̄, t̄):

x̄ = x
ε

and t̄ = t

ε
so that the rescaled Euler–Poisson system becomes


∂t̄n + ∇x̄ · (nu) = 0,

∂t̄u + (u · ∇x̄)u + τ∇x̄ ln n = ∇x̄�,

�x̄� = n − e−�.

(1.6)
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Note that under rescaling, non-homogeneous terms on the right-hand side of (1.6), for instance,
ionization in (1.1a) and friction in (1.1b) will be of the order of ε and hence legitimately
neglected in our theory. Furthermore, we once again assume that our boundary and initial
conditions will be consistent with our rescaling. Also, as mentioned earlier in the sheath
boundary layer, the electron density e−� will be negligible and it is convenient to drop this
term in (1.6c) so that we recover the classical sheath system


∂t̄n + ∇x̄ · (nu) = 0,

∂t̄u + (u · ∇x̄)u + τ∇x̄ ln n = ∇x̄�,

�x̄� = n,

(1.7)

where τ � 0 is a constant.

2. Derivation of the self-similar Euler–Poisson system

We introduce new dependent variables N and φ:

N := t̄2n and φ := � − 2 ln t̄ ,

and assume that the velocity field u = (u, v) is irrotational so that there exists a potential
function U for a vector field (u − ξ, v − η):

∂ξU = u − ξ and ∂ηU = v − η.

In the following, we derive the ‘self-similar Euler–Poisson system’:


∇̃ · (N∇̃U) = 0,

φ = |∇̃U |2
2

+ U + τ ln N,

�̃φ = N − e−φ,

(2.1)

where ∇̃ and �̃ are taken with respect to self-similar variables (ξ, η).

• Derivation of (2.1a). By direct calculation, we have

t̄3(∂tn + ∇ · (nu)) = −ξ∂ξN − η∂ηN − 2N + ∂ξ (Nu) + ∂η(Nv)

= ∂ξ (N(u − ξ)) + ∂η(N(v − η))

= ∂ξ (N∂ξU) + ∂η(N∂ηU)

= ∇̃ · (N∇̃U).

Hence (1.3a) implies

∇̃ · (N∇̃U) = 0.

• Derivation of (2.1b). Recall from (1.3) that the momentum equations for u and v:

∂t̄u + u∂x̄u + v∂ȳu + τ∂x̄(ln n) = ∂x̄φ, (2.2)

∂t̄v + u∂x̄v + v∂ȳv + τ∂ȳ(ln n) = ∂ȳφ, (2.3)

where we used ∇x̄φ = ∇x̄�. By direct calculation, (2.2) reduces to

∂ξ

(
(∂ξU)2

2
+ U +

(∂ηU)2

2
+ τ ln N − φ

)
= 0. (2.4)

Similarly, we have

∂η

(
(∂ηU)2

2
+ U +

(∂ξU)2

2
+ τ ln N − φ

)
= 0. (2.5)
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F(ξ      ) =  η 
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 η 
ν

Figure 1. A schematic diagram of an infinite plane target boundary.

We combine (2.4) and (2.5) to obtain

φ = |∇̃U |2
2

+ U + τ ln N,

where of course φ is determined only up to a constant.
• Derivation of (2.1c). The Poisson equation becomes

�x̄φ = ∂2
x̄ φ + ∂2

ȳ φ = ∂2
ξ φ + ∂2

ηφ

t̄2
= �̃φ

t̄2
.

Hence we have

�̃φ = t̄2�φ = t̄2(n − e−�) = N − e−φ.

Now let us consider our quasi-neutral system, i.e., (2.1) where N = e−φ (or n = e−�):


∇̃ · (N∇̃U) = 0,

|∇̃U |2
2

+ U + (τ + 1) ln N = 0,
(2.6)

where again U is determined only up to a constant. If we substitute (2.6b) into (2.6a), we
obtain the second-order equation

[τ + 1 − (∂ξU)2]∂2
ξ U + [τ + 1 − (∂ηU)2]∂2

ηU − 2(∂ξU)(∂ηU)(∂ξ ∂ηU) = (∂ξU)2 + (∂ηU)2.

(2.7)

System (2.7) is elliptic when |∇̃U | <
√

τ + 1 and hyperbolic when |∇̃U | >
√

τ + 1.

3. Explicit self-similar sheath solutions

In this section we consider explicit solutions to the self-similar sheath system:


∇̃ · (N∇̃U) = 0,

φ = |∇̃U |2
2

+ U + τ ln N,

�̃φ = N,

(3.1)

where we have assumed that e−φ is negligible in the Euler–Poisson system (2.1). For example,
the target boundary may be given by

∂�0 = {(ξ, η) : ξ ∈ R, η = 0},
which is an infinite plane (see figure 1) or a wedge ∂�0 = {(ξ, η) : ξ � 0, η = 0; η =
(tan θw)ξ, ξ � 0}.

Below we look for (N,U) with the following ansatz

N = N0 and U = Aξη +
B

2
(ξ 2 − η2) + Cξ + Dη + E, (3.2)
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where N0, A,B,C,D and E are constants. Since N is a constant and by the ansatz for U,

∇̃ · (N∇̃U) = 0.

We substitute ansatz (3.2) to the the third equation of the self-similar sheath system to find N0:

�̃φ = �̃

(
U +

|∇̃U |2
2

+ τ ln N0

)

= �̃

( |∇̃U |2
2

)

= 1

2
�̃((Aη + Bξ + C)2 + (Aξ − Bη + D)2)

= 2(A2 + B2) = N0. (3.3)

Hence we have determined self-similar solutions for the system of the form

N = 2(A2 + B2), U = Aξη +
B

2
(ξ 2 − η2) + Cξ + Dη + E,

φ = Aξη +
B

2
(ξ 2 − η2) + Cξ + Dη + E +

1

2
((Aη + Bξ + C)2 (3.4)

+ (Aξ − Bη + D)2) + τ ln 2(A2 + B2).

4. Location of the sheath interface

In this section, we look for the explicit self-similar profile F using the interface condition.
Recall from our discussion in section 1 that earlier work has suggested the choice of

the sheath edge as either (i) a Mach surface or (ii) the region where quasi-neutrality begins
to break down. However to use (ii) would mean solving the classical isothermal Euler
equations (1.2) under the scaling ξ = x/t, η = y/t . Furthermore, relating this solution to any
boundary conditions would add an additional complication. Hence for simplicity we choose to
use (i) the Bohm-type criterion and identify the sheath interface as the curve in the self-similar
(ξ, η) domain where the normal component of the pseudo-velocity (∂ξU, ∂ηU) is sonic. This
is precisely the Mach surface definition formulated by Stangeby and Allen [23], and extended
by us to the self-similar case [7]. We will assume that S may be represented by the graph

y = tF

(
x
t

)
so that

η = F(ξ) and ν = (−F ′, 1)√
1 + (F ′)2

, (4.1)

where ν is the normal to the sheath interface. Since

U = Aξη +
B

2
(ξ 2 − η2) + Cξ + Dη + E,

we have

∂ξU = Aη + Bξ + C, ∂ηU = Aξ − Bη + D.

On the other hand, the Bohm-type relation (∂ξU, ηξU) · ν = −√
1 + τ implies

(AF + Bξ + C,Aξ − BF + D) · (−F ′, 1) = −
√

(1 + τ)(1 + (F ′)2). (4.2)
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Figure 2. One branch of the sheath edge corresponding to (4.4).

(This figure is in colour only in the electronic version)

We set

A := (1 + τ) − (AF + Bξ + C)2,

B := 2(AF + Bξ + C)(Aξ − BF + D),

C := (1 + τ) − (Aξ − BF + D)2.

We see that (4.2) yields a first order ODE for F:

F ′ = −B ± √
B2 − 4AC

2A
. (4.3)

Note that knowledge of F,U and φ provides us a posteriori with self-similar solutions for
boundary value problems. For example consider the case A = 1, B = C = D = E = 0, so
that in the plasma sheath (via (3.4))

N = 2, U = ξη, φ = ξη + 1
2 (ξ 2 + η2) + τ ln 2.

On a ‘wall’ η = 0, we have

φ = ξ 2

2
+ τ ln 2, U = 0, ∂ξU = 0, ∂ηU = ξ

and the flow is

supersonic when |ξ | >
√

τ + 1 and subsonic when |ξ | <
√

τ + 1.

Equation (4.3) for the sheath edge becomes

F ′ = −Fξ +
√

1 + τ
√

F 2 + ξ 2 − (1 + τ)

(1 + τ) − F 2
, (4.4)

which leads to a sheath edge for |ξ | >
√

τ + 1. A numerical integration for (4.4) with initial
conditions

F(
√

1 + τ) = 0 and F(−
√

1 + τ) = 0

yields the two branches of the sheath edge (see figure 2, F(1) = 0 with τ = 0).
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Figure 3. Hypothetical experimental illustration of the solution in section 4

5. Conclusion

In this paper, we have rewritten quasi-neutral and sheath dynamics in terms of self-similar
independent variables ξ = x/t, η = y/t and dependent variables N,U :

∂ξU = u − ξ, ∂ηU = v − η, N = t̄2n, φ = � − 2 ln t̄ .

Furthermore, our formulation has led to a self-similar step sheath model (in fact a self-similar
version of the one of Riemann and Daube [16]) whose transition sheath edge is on the Mach-
edge curve ∇̃U · ν = −√

τ + 1, where τ is the ratio of ion to electron temperatures. An exact
solution in the sheath layer has been given:

U = Aξη +
B

2
(ξ 2 − η2) + Cξ + Dη + E, N = 2(A2 + B2)

and graph of the sheath edge η = F(ξ) has been explicitly given for the case A = 1, B =
C = D = E = 0.

Finally, we note the connection between our work and the motivating numerical results
of Sheridan [20]. Sheridan’s numerical results noted that self-similarity appears as a time-
asymptotic result of his solution of the non-self-similar Euler–Poisson system (1.1) for a
hypothetical plasma flowing into a target wall. Here we show that self-similarity is no
surprise: the Euler–Poisson equations themselves admit a self-similar representation. As to a
hypothetical experiment, ours would be slightly different from Sheridan’s and follows from
the data of section 4. This is illustrated in figure 3.
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